The elk (Cervus elaphus canadensis) is an impressive animal, with mature bulls weighing an average of 700 pounds and cows weighing about 500 pounds. The antlers of a bull elk themselves can weigh more than 40 pounds.1 Compared to other cervids, female elk are more similar to the males in external appearance and body mass. Elk range in color from dark brown in winter to tan in summer and have a characteristic lighter-colored rump. During winter, males and females have well-developed, dark neck manes.
The habitats of elk vary with conditions and the seasons. Mountainous terrain with alpine meadows and lush valleys are considered to be ideal elk habitat, although elk are known to migrate seasonally, favoring higher elevations in summer and lower elevations during winter. In some parts of the Rocky Mountains, elk remain in the same area year round because all their habitat needs are met.2
Elk are browsers who feed on grasses, sedges, and forbs. They especially favor dandelions, aster, hawkweed, violets, clover and mushrooms. The elk’s diet varies seasonally. Spring forage includes early -greening grasses and forbs that are highly palatable, succulent and nutritionally rich. During summer, the elk’s diet is composed of 60% to 100% forbs (dandelion, geranium, asters, clovers). Fall begins a period when leafy vegetation contains reduced protein but is still a good source of energy. Grass averages 73% of the elk’s fall diet and they also begin to eat more shrubs. In winter, grasses may make up as much as 84% of an elk’s diet.1
Cover is important to elk for security or escape and for protection from extreme weather. They employ cover most during calving and times such as hunting season. Elk predators include bears, wolves and mountain lions.
Elk prefer habitats that are close to water. Studies have shown that 80 percent of elk summer habitat is within one-quarter to one-half a mile of water.2 Cows with calves are especially dependent on water sources. A cow hides her newborn calf for 2 to 3 weeks as the calf eats, sleeps and gains strength. During this period, the calf avoids predators by remaining absolutely motionless. During winter, elk satisfy their water requirement by consuming snow when open water is not available.
By early fall, calves are able to survive independent of their mothers, but usually stay with the herd. While the bulls seem to govern the herd during the rut, it is usually an older cow that determines where the herd goes to avoid real or perceived danger. By mid- October, most of the rut activity declines and bulls begin to drift off and become solitary. During this period, bulls must regain condition lost during the rut and put on fat reserves for the coming winter.1
Frostbite is a cold-related injury in which body tissues begin to freeze. Frostbite can affect any part of the body that is exposed to extreme cold for an extended period of time. This period of time is reduced as the relative (ambient) temperature drops. When subjected to cold, blood vessels throughout the body constrict to preserve heat; this means that the body biochemically prioritizes keeping its core warm over the extremities. This is why they are more at risk for frostbite.
With frostnip (early-stage frostbite or the near-freezing of tissues), the skin becomes red, cold to the touch and may begin to go numb. In these cases, if the skin is warmed soon enough after exposure, there is usually no permanent damage. Continued exposure to cold can result in superficial frostbite.
In superficial frostbite, ice crystals begin to form within the skin as it freezes. This can cause permanent damage to the tissue affected. At this stage, the skin may appear white and fluid-filled blisters can appear. Naturally, this may be difficult to detect in wild animals, as their bodies are covered with a fur coat. In cases of deep frostbite, large blisters form, and the tissue will often turn black and hard as it necrotizes.
In North America, elk are among the most well-known of the large wildlife species, and are popular with hunters and wildlife enthusiasts alike. The chemical immobilization of elk can require extended periods of immobility in the captured animal. While hypothermia is an inherent risk to any animal undergoing chemical immobilization regardless of ambient temperature, frostbite is an even greater risk during the winter months.
Frostbite is divided into four overlapping phases:
Prefreeze consists of tissue cooling with accompanying vasoconstriction and ischemia and without ice crystal formation. The freeze–thaw phase is represented by the intracellular or extracellular formation of ice crystals. This can give rise to protein and lipid derangement, cellular electrolyte shifts, cellular dehydration, cell membrane lysis, and cell death. In the vascular stasis phase, vessels fluctuate between constriction and dilation, and blood may leak from vessels or coagulate within them. The late ischemic phase results from progressive tissue ischemia and infarction from a cascade of events, including inflammation, vasoconstriction and emboli.4
Frostbite is classified into four degrees of injury that follow the classification schemes for thermal burn injury. These are based on acute physical findings and advanced imaging after rewarming. Early stages of frostbite are to be differentiated from frostnip, which is a superficial nonfreezing cold injury associated with intense vasoconstriction on exposed skin. As indicated earlier, frostnip may, however, precede frostbite. In these cases, ice crystals do not form within the tissue and tissue loss does not occur.5,6
A variation favored by McIntosh, et. al., involves a 2-tier classification scheme:
It should be noted that the severity of frostbite may vary within a single extremity.
Prevention is a far better methodology than treatment for frostbite, which is usually not improved by treatment. Underlying medical problems and the chemical immobilization event itself can increase risk of frostbite, so prevention must address both health-related and environmental aspects. Frostbite injury usually occurs when tissue heat loss exceeds the ability of local tissue perfusion to prevent freezing of soft tissues. The team in the field must ensure adequate tissue perfusion and minimize heat loss to prevent frostbite.5
Preventive measures to ensure local tissue perfusion include:
Measures should also be taken to minimize exposure of the animal’s tissues to cold, such as:
Since the time that an animal’s extremity can remain numb before developing frostbite cannot be determined in a chemically immobilized animal, any extremity at risk for frostbite (typically indicated by pale color) should be warmed.3
If an elk’s body part is frozen in the field, the frozen tissue should be protected from further damage.3,4 Then, a decision must be made whether or not to thaw the tissue. If environmental conditions are such that thawed tissue could refreeze, it is safer to keep the affected part frozen until a thawed state can be maintained. Frostbite thaws spontaneously and should be allowed to do so if rapid rewarming cannot be easily achieved.
Hypothermia frequently accompanies frostbite and causes peripheral vasoconstriction that impairs blood flow to the extremities. Mild hypothermia may be treated concurrently with frostbite injury. Moderate and severe hypothermia should be treated effectively before treating frostbite injury.6
1. Hydration
Vascular stasis can result from frostbite injury, thus appropriate hydration and avoidance of hypovolemia are important for frostbite recovery. Intravenous normal saline should be given to maintain normal urine output. IV fluids should optimally be warmed before infusion and infused in small, rapid boluses, as slow infusion can result in fluid cooling and even freezing as it passes through tubing. Fluid administration should be optimized to prevent clinical dehydration.5,6
2. Low Molecular Weight Dextran Treatment
Intravenous low molecular weight dextran (LMWD) decreases blood viscosity by preventing red blood cell aggregation and formation of microthrombi and can be given in the field once it has been warmed. In some animal studies, the extent of tissue necrosis was found to be significantly less than in control subjects when LMWD was used, and was more beneficial if given early.3,6
The use of LMWD has not been evaluated in combination with other treatments such as thrombolytics. LMWD should be given if the animal is not being considered for other systemic treatments, such as thrombolytic therapy.4
3. Treatment With NSAIDS
Nonsteroidal anti-inflammatory drugs (NSAIDs) block the arachidonic acid pathway and decrease production of prostaglandins and thromboxanes. These can lead to vasoconstriction, dermal ischemia, and further tissue damage.3 No studies have demonstrated that any particular anti-inflammatory agent or dosing is clearly related to outcome, however. One rabbit ear model study showed 23% tissue survival with aspirin vs 0% in the control group.6 However, aspirin theoretically blocks production of certain prostaglandins that are beneficial to wound healing.7 The authors of the rabbit ear model study recommended the use of ibuprofen rather than aspirin.